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Benefit to the Program  
• Program goals being addressed. 

– Develop technologies that will support industries’ ability to 

predict CO2 storage capacity in geologic formations. 

– Develop technologies to demonstrate that 99% of injected 

CO2 remains in injection zones. 

• Project benefits statement. 

– The project is developing CO2-optimized rock-fluid models 

that will incorporate the seismic signatures of (1) saturation 

scales and free vs. dissolved CO2, (2) pore pressure 

changes, and (3) CO2-induced chemical changes to the 

host rock.  These models will be an integral part of 

interpretation of seismic images of the subsurface at 

injection sites.  They address the program’s needs to predict 

storage capacity and to ensure 99% containment of CO2. 
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Project Overview:   
Goals and Objectives 

• The goal of this project is to provide robust quantitative 

schemes to reduce uncertainties in seismic interpretation for 

saturation state and pore pressure in reservoirs saturated 

with CO2-brine mixtures.  

• Success criteria include 

- Creation of laboratory dataset on changes in porosity, 

permeability, and elastic properties associated with 

injection of CO2-brine mixtures in four different lithologies. 

- Improved theoretical models that predict the frequency-

dependent seismic velocity changes associated with 

injection, including changes in pore pressure, saturation, 

and dissolution or precipitation of minerals in the rock 

frame.  
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Technical Status 



The Challenge:  Seismic Monitoring of CO2 
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Map of Seismic Reflectivity 

or Changes of Reflectivity 

Rock/Fluid 

Model 

Interpreted Saturation 

Interpreted Pressure 

Workflow for monitoring changes in the subsurface 
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Changes in:  
• Seismic Vp  

• Seismic Vs  

• Density 

• Attenuation ? 

Changes in:  
• Saturation 

• Stress/pressure 

• Rock mineral frame 

model 

Interpreted Saturation 



Rock’s Seismic (Elastic) Response 
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Mineralogy ✔ ✔ 

Porosity ✔ ✔ 

Microgeometry ✔ ✔ 

Stress/Pressure ✔ ✔ 

Fluids ✔ 

Affected by: 

Bulk modulus:   Shear modulus:   



Rock’s Seismic (Elastic) Response 
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Affected by: 

Bulk modulus:   Shear modulus:   



Conventional Seismic-Fluid Model 
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Current technology for seismic monitoring of injected CO2  

saturation is based on the equations of Gassmann (1951): 

bulk modulus 

shear modulus 

bulk density 

These assume chemically inert processes;  ie. constant 

microgeometry, porosity, mineralogy, and frame stiffness. 

 

They also require knowledge of the compressibility and density 

of CO2-brine mixtures as a function of T, P, and salinity. 



The Problem 

 

Multiphase CO2-rich fluid-rock systems can be 

chemically reactive, altering the rock frame via 

dissolution, precipitation, and mineral replacement.   

 

Errors from ignoring the physicochemical factors during 

CO2 injection can affect not only the magnitude, but also 

the sign, of predicted seismic velocity changes, resulting 

in seriously compromised estimates of saturation and 

pressure of CO2-rich fluids  
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Approach:  Tasks 
 

1. Project Management, Planning, Reporting 

2. Laboratory Measurements 

• Sample selection (MVA working groups, ExxonMobil, Stanford) 

• Rock characterization (porosity, perm, elastic velocities, 

microstructure) 

• Exposure to CO2-brine, while monitoring Vp, Vs 

• Repeat characterization 

• CO2-brine mixture characterization vs. T and P 

3. Theoretical Modeling 

• Empirical/theoretical expressions for CO2-brine properties 

• Quantification of changes to pore microstructure 

• Derive equations to describe velocity-vs.-saturation, accounting for 

chemical changes to rock microstructure. 

4. Validation 

5. Collaboration with MVA Working Groups 
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Laboratory Work 



Experimental Design 
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• Injection of CO2-rich brine into carbonates/sandstones  dissolution 

of Calcite and Chamosite 

• Injections are performed under reservoir pressure conditions  

Pc up to 15-55 MPa and Pf up to 15-28MPa 



Rock Samples 
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Micritic Carbonates 



Rock Samples 
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Micritic Carbonates 



Fe-rich Chlorite (Chamosite)  Sandstones from the Tuscaloosa Formation, Cranfield, MS 

Rock Samples 
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Fe-rich Chlorite (Chamosite)  Sandstones from the Tuscaloosa Formation, Cranfield, MS 

Rock Samples 
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Experimental Protocol 
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Pre-Injection dry 



Monitoring Properties 

 

• Chemical composition (pH, Cation concentration) of 

the brine and the injected pore volumes 

 

• Porosity and permeability as a result of dissolution 

and mechanical compaction 

 

• P- and S- wave velocities of the saturated sample 

and of the dry frame 
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Carbonate Rocks 



Velocity vs. Injected Volume and Pressure 
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Velocities of the dry rock frame 

after injection 

V 

P 

V 

P 



Velocity vs. Injected Volume and Pressure 
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Time-Lapse SEM 
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Time-Lapse SEM 
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Chamosite-Rich Sandstones 



Velocity vs. Injected Volume and Pressure 
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Velocities of the dry rock frame 

after injection 



Velocity & Fe Conc. vs. Inject. Volume and Pressure 
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Time-Lapse SEM 
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Time-Lapse SEM 
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Time-Lapse SEM 
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Time-Lapse SEM 
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Rock Physics Models 
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Modeling:  Elastic Response to Saturation 

Increasing CO2 

f L2

VP

VP 0

Finite element and analytical 

methods to simulate velocity vs. 

frequency response of CO2 

saturation.  In the field, we expect 

Sw heterogeneities to depend on 

lithologic scales 

Different scales of saturation 

Data from Cadoret, 1993 

1kHz 

50kHz 

500kHz 
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Modeling:  Elastic Response to Saturation 

Increasing CO2 

f L2

VP

VP 0

We have developed a simple, 

differential scheme that allows 

us to analytically superimpose 

distributions of saturation scales 

in the rock. 

Data from Cadoret, 1993 

1kHz 

50kHz 

500kHz 
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Modeling:  Fluid-Solid Substitution 

Classic Scenario:  Rock with some initial pore 
fill.  We have measured (e.g., from well logs): 

• Initial elastic constants 

• Porosity 

• Mineral moduli 

We want to predict the new elastic moduli of 
the same rock,  when the pore space is filled 
with something else. 

 

In our case, this could be brine, CO2, or solid  

mineral. 
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Modeling:  Fluid-Solid Substitution 

Predicting the new moduli after substitution of the 

pore fill is (almost) never unique, without knowledge 

of the pore space geometry. 

But … we can predict bounds on the substituted moduli. 
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Modeling:  Fluid-Solid Substitution 
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Gassmann gives a unique prediction, only because we 
make a very strong assumption that the pore space is 
connected. 
 
If we don’t know much about the pore space, then 
Gassmann gives a lower bound.  It is well known that 
disconnected pores, squirt, etc yield a different result. 
 
(Gibiansky and Torquato, 1998) 
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Modeling:  Fluid-Solid Substitution 
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So how do we model solid substitution? 

… we need an exact continuum mechanics 
equation for the rock elasticity. 
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Modeling:  Fluid-Solid Substitution 

–   39 

Points on the HS bounds are physically realizable -- the 

HS equations are the exact expressions for the effective 

moduli of those materials. 

Porosity   
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Modeling:  Fluid-Solid Substitution 
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Fluid or solid substitution for a point on the HS bounds 

is exact and unique. 
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stiffer pore fill 
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Modeling:  Fluid-Solid Substitution 

–   41 

Off the bounds?  We construct modified upper HS bound through 

point X. Hence, MUHS is the exact expression for modulus of  

material at X, which can be constructed from points P and Q, 

which in turn are constructed from the end points. 

“Embedded Bounds Method” 
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Initial pore fill – soft solid         
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Modeling:  Fluid-Solid Substitution 
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Fluid or solid substitution for point X can be computed 

exactly...      
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K fl 1GPa; G fl 0.5GPa; K fl 3GPa; G fl 2GPa

Initial pore fill – soft solid         New pore fill – stiffer solid         
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Modeling:  Fluid-Solid Substitution 

–   43 

… but not uniquely.   We can construct an infinite number of 

MUHS and an infinite number of MLHS bound through point X.  

Each transforms to a different modulus at X’ after substitution. 
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Accomplishments to Date 

• Laboratory measurements completed on four lithologies (clean 

sandstone, clay-bearing sandstone, calcite-cemented sandstone, 

carbonates) 

• Apparatus built and tested for measuring dynamic elastic moduli of CO2-

brine mixtures. 

• Analytical method developed to model frequency- and saturation-

dependent elastic properties of CO2-bearing rock. 

• Preliminary model developed for “solid-substitution.” 
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Summary 

• We have observed irreversible changes in porosity, permeability, and 

elastic properties in carbonate and clay-bearing rocks when injected 

with CO2-brine mixtures. 

• These changes to the solid rock frame are not included in conventional 

interpretation of seismic data. 

• Preliminary observations suggest that dissolution moves elastic 

properties along normal diagenetic trends, which gives strategies for 

modeling the elastic response to dissolution or precipitation. 

• We have developed a strategy for modeling “solid substitution in rocks, 

based on embedded Hashin-Shtrikman bounds.  We have shown that all 

fluid or solid substitution is nonunique unless information on pore 

microgeometry is available. 

• Many rock models have an implicit geometry.  Be cautious with 

substitution.  Even though it fits the original data exactly, its substituted 

prediction might be wrong. 45 



Future Plans 

• Complete measurements on the compressibility of CO2-brine mixtures. 

• Complete theoretical modeling on effects of frequency, saturation, 

pressure, and permanent changes to the rock frame. 
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Appendix 
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Organization Chart 

• Mavko PI 

• Dr. Tiziana Vanorio – Laboratory lead 

• 1 Postdoc 

• 2 Graduate Students 
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Gantt Chart 

  

 
 

 

= task completed  


